Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.392
Filtrar
1.
Genes Brain Behav ; 23(2): e12896, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38662955

RESUMO

Gastroesophageal reflux disease (GERD) is associated with sleep disturbances. However, mechanisms underlying these interactions remain unclear. Male acute and chronic sleep deprivation (SD) mice were used for this study. Mice in the chronic SD group exhibited anxiety- and depression-like behaviors. We further performed high-throughput genome sequencing and bioinformatics analysis to screen for featured differentially expressed genes (DEGs) in the esophageal tissue. The acute SD group, comprised 25 DEGs including 14 downregulated and 11 upregulated genes. Compared with the acute SD group, more DEGs were present in the chronic SD group, with a total of 169 DEGs, including 88 downregulated and 81 upregulated genes. Some DEGs that were closely related to GERD and associated esophageal diseases were significantly different in the chronic SD group. Quantitative real-time polymerase chain reaction verified the downregulation of Krt4, Krt13, Krt15 and Calml3 and upregulation of Baxl1 and Per3. Notably, these DEGs are involved in biological processes, which might be the pathways of the neuroregulatory mechanisms of DEGs expression.


Assuntos
Esôfago , Privação do Sono , Animais , Masculino , Privação do Sono/genética , Privação do Sono/metabolismo , Camundongos , Esôfago/metabolismo , Refluxo Gastroesofágico/genética , Refluxo Gastroesofágico/metabolismo , Camundongos Endogâmicos C57BL , Transcriptoma , Depressão/genética , Depressão/metabolismo
2.
Heliyon ; 10(7): e28819, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38623196

RESUMO

Sleep deprivation refers to an intentional or unintentional reduction in sleep time, resulting in insufficient sleep. It is often caused by sleep disorders, work demands (e.g., night shifts), and study pressure. Sleep deprivation promotes Aß deposition and tau hyperphosphorylation, which is a risk factor for the pathogenesis and progression of Alzheimer's disease (AD). Recent research has demonstrated the potential involvement of sleep deprivation in both the pathogenesis and progression of AD through glial cell activation, the glial lymphatic system, orexin system, circadian rhythm system, inflammation, and the gut microbiota. Thus, investigating the molecular mechanisms underlying the association between sleep deprivation and AD is crucial, which may contribute to the development of preventive and therapeutic strategies for AD. This review aims to analyze the impact of sleep deprivation on AD, exploring the underlying pathological mechanisms that link sleep deprivation to the initiation and progression of AD, which offers a theoretical foundation for the development of drugs aimed at preventing and treating AD.

3.
Inflammation ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38668837

RESUMO

Sleep deprivation (SD) has been associated with several adverse effects, including cognitive deficit. Emerging evidence suggests microglia-associated neuroinflammation is a potential trigger of cognitive deficit after SD. Stimulator of interferon genes (STING) constitutes an important factor in host immune response to pathogenic organisms and is found in multiple cells, including microglia. STING is involved in neuroinflammation during neuronal degeneration, although how STING signaling affects SD-induced neuroinflammation remains unexplored. In the present study, the chronic sleep restriction (CSR) model was applied to examine the effects of STING signaling on cognition. The results revealed that cGAMP, a high-affinity and selective STING agonist, significantly improved cognitive deficit, alleviated neural injury, and relieved neuroinflammation in CSR mice by activating the STING-TBK1-IRF3 pathway. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) was upregulated in CSR mice treated with cGAMP, and this effect was abolished by STING knockout. TREM2 upregulation induced by cGAMP regulated the microglia from pro-inflammatory state to anti-inflammatory state, thereby relieving neuroinflammation in CSR mice. These findings indicate cGAMP-induced STING signaling activation alleviates SD-associated neuroinflammation and cognitive deficit by upregulating TREM2, providing a novel approach for the treatment of SD-related nerve injury.

4.
Brain Res ; 1836: 148916, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38609030

RESUMO

BACKGROUND: Depression is defined by a persistent low mood and disruptions in sleep patterns, with the WHO forecasting that major depression will rank as the third most prevalent contributor to the global burden of disease by the year 2030. Sleep deprivation serves as a stressor that triggers inflammation within the central nervous system, a process known as neuroinflammation. This inflammatory response plays a crucial role in the development of depression by upregulating the expression of inflammatory mediators that contribute to symptoms such as anxiety, hopelessness, and loss of pleasure. METHODS: In this study, sleep deprivation was utilized as a method to induce anxiety and depressive-like behaviors in mice. The behavioral changes in the mice were then evaluated using the EZM, EPM, TST, FST, and SPT. H&E staining and Nissl staining was used to detect morphological changes in the medial prefrontal cortical (mPFC) regions. Elisa to assess serum CORT levels. Detection of mRNA levels and protein expression of clock genes, high mobility genome box-1 (Hmgb1), silent message regulator 6 (Sirt6), and pro-inflammatory factors by RT-qPCR, Western blotting, and immunofluorescence techniques. RESULTS: Sleep deprivation resulted in decreased exploration of unfamiliar territory, increased time spent in a state of despair, and lower sucrose water intake in mice. Additionally, sleep deprivation led to increased secretion of serum CORT and upregulation of clock genes, IL6, IL1ß, TNFα, Cox-2, iNOS, Sirt6, and Hmgb1. Sleep. CONCLUSIONS: Sleep deprivation induces anxiety-depressive-like behaviors and neuroinflammation in the brain. Transcription of clock genes and activation of the Sirt6/Hmgb1 pathway may contribute to inflammatory responses in the mPFC.

5.
Front Neurosci ; 18: 1377094, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638698

RESUMO

Objectives: To assess the effect of total sleep deprivation (TSD) on spontaneous brain activity in medical staff during routine clinical practice. Methods: A total of 36 medical staff members underwent resting-state functional MRI (rs-fMRI) scans and neuropsychological tests twice, corresponding to rested wakefulness (RW) after normal sleep and 24 h of acute TSD. The rs-fMRI features, including the mean fractional amplitude of low-frequency fluctuation (mfALFF), z-score transformed regional homogeneity (zReHo), and functional connectivity (zFC), were compared between RW and TSD. Correlation coefficients between the change in altered rs-fMRI features and the change in altered scores of neuropsychological tests after TSD were calculated. Receiver operating characteristic (ROC) and logistic regression analyses were performed to evaluate the diagnostic efficacy of significantly altered rs-fMRI features in distinguishing between RW and TSD states. Results: Brain regions, including right superior temporal gyrus, bilateral postcentral gyrus, left medial superior frontal gyrus, left middle temporal gyrus, right precentral gyrus, and left precuneus, showed significantly enhanced rs-fMRI features (mfALFF, zReHo, zFC) after TSD. Moreover, the changes in altered rs-fMRI features of the right superior temporal gyrus, bilateral postcentral gyrus, left middle temporal gyrus, and left precuneus were significantly correlated with the changes in several altered scores of neuropsychological tests. The combination of mfALFF (bilateral postcentral gyrus) and zFC (left medial superior frontal gyrus and left precuneus) showed the highest area under the curve (0.870) in distinguishing RW from TSD. Conclusion: Spontaneous brain activity alterations occurred after TSD in routine clinical practice, which might explain the reduced performances of these participants in neurocognitive tests after TSD. These alterations might be potential imaging biomarkers for assessing the impact of TSD and distinguishing between RW and TSD states.

6.
Sleep ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629438

RESUMO

The nuclear factor binding the κ light chain in B-cells (NFκB) is involved in a wide range of cellular processes including development, growth, innate immunity, and sleep. However, genetic studies of the role of specific NFκB transcription factors in sleep have been limited. Drosophila fruit flies carry three genes encoding NFκB transcription factors, Dorsal, Dorsal Immunity Factor (Dif), and Relish. We previously found that loss of the Relish gene from fat body suppressed daily nighttime sleep, and abolished infection-induced sleep. Here we show that Dif regulates daily sleep and recovery sleep following prolonged wakefulness. Mutants of Dif showed reduced daily sleep and suppressed recovery in response to sleep deprivation. Pan-neuronal knockdown of Dif strongly suppressed daily sleep, indicating that in contrast to Relish, Dif functions from the central nervous system to regulate sleep. Based on the unique expression pattern of a Dif- GAL4 driver, we hypothesized that its effects on sleep were mediated by the pars intercerebralis (PI). While RNAi knock-down of Dif in the PI reduced daily sleep, it had no effect on the recovery response to sleep deprivation. However, recovery sleep was suppressed when RNAi knock-down of Dif was distributed across a wider range of neurons. Induction of the nemuri (nur) antimicrobial peptide by sleep deprivation was reduced in Dif mutants and pan-neuronal over-expression of nur also suppressed the Dif mutant phenotype by significantly increasing sleep and reducing nighttime arousability. Together, these findings indicate that Dif functions from brain to target nemuri and to promote deep sleep.

7.
J Affect Disord ; 355: 478-486, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38574868

RESUMO

BACKGROUND: Sleep disturbances are not only frequent symptoms, but also risk factors for major depressive disorder. We previously reported that depressed patients who experienced "Hypersomnia" showed a higher and more rapid response rate under paroxetine treatment, but the underlying mechanism remains unclear. The present study was conducted to clarify the beneficial effects of sleep rebound through an experimental "Hypersomnia" rat model on glucocorticoid and hippocampal neuroplasticity associated with antidepressive potency. METHODS: Thirty-four male Sprague-Dawley rats were subjected to sham treatment, 72-h sleep deprivation, or sleep deprivation and subsequent follow-up for one week. Approximately half of the animals were sacrificed to evaluate adrenal weight, plasma corticosterone level, hippocampal content of mRNA isoforms, and protein of the brain-derived neurotrophic factor (Bdnf) gene. In the other half of the rats, Ki-67- and doublecortin (DCX)-positive cells in the hippocampus were counted via immunostaining to quantify adult neurogenesis. RESULTS: Prolonged sleep deprivation led to adrenal hypertrophy and an increase in the plasma corticosterone level, which had returned to normal after one week follow-up. Of note, sleep deprivation-induced decreases in hippocampal Bdnf transcripts containing exons II, IV, VI, and IX and BDNF protein levels, Ki-67-(+)-proliferating cells, and DCX-(+)-newly-born neurons were not merely reversed, but overshot their normal levels with sleep rebound. LIMITATIONS: The present study did not record electroencephalogram or assess behavioral changes of the sleep-deprived rats. CONCLUSIONS: The present study demonstrated that prolonged sleep deprivation-induced adversities are reversed or recovered by sleep rebound, which supports "Hypersomnia" in depressed patients as having a beneficial pharmacological effect.


Assuntos
Transtorno Depressivo Maior , Privação do Sono , Humanos , Ratos , Masculino , Animais , Privação do Sono/metabolismo , Ratos Sprague-Dawley , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Corticosterona , Antígeno Ki-67/metabolismo , Hipocampo/metabolismo
8.
Ann Med ; 56(1): 2331054, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38635448

RESUMO

BACKGROUND: Cognitive function, including moral decision-making abilities, can be impaired by sleep loss. Blue-enriched light interventions have been shown to ameliorate cognitive impairment during night work. This study investigated whether the quality of moral decision-making during simulated night work differed for night work in blue-enriched white light, compared to warm white light. METHODS: Using a counterbalanced crossover design, three consecutive night shifts were performed in blue-enriched white light (7000 K) and warm white light (2500 K) provided by ceiling-mounted LED luminaires (photopic illuminance: ∼200 lx). At 03:30 h on the second shift (i.e. twice) and at daytime (rested), the Defining Issues Test-2, assessing the activation of cognitive schemas depicting different levels of cognitive moral development, was administered. Data from 30 (10 males, average age 23.3 ± 2.9 years) participants were analysed using linear mixed-effects models. RESULTS: Activation of the post-conventional schema (P-score), that is, the most mature moral level, was significantly lower for night work in warm white light (EMM; estimated marginal mean = 44.3, 95% CI = 38.9-49.6; pholm=.007), but not blue-enriched white light (EMM = 47.5, 95% CI = 42.2-52.8), compared to daytime (EMM = 51.2, 95% CI = 45.9-56.5). Also, the P-score was reduced for night work overall (EMM = 45.9, 95% CI = 41.1-50.8; p=.008), that is, irrespective of light condition, compared to daytime. Neither activation of the maintaining norms schema (MN-score), that is, moderately developed moral level, nor activation of the personal interest schema (i.e. the lowest moral level) differed significantly between light conditions. The MN-score was however increased for night work overall (EMM = 26.8, 95% CI = 23.1-30.5; p=.033) compared to daytime (EMM = 23.1, 95% CI = 18.9-27.2). CONCLUSION: The results indicate that moral decisions during simulated night work in warm white light, but not blue-enriched white light, become less mature and principle-oriented, and more rule-based compared to daytime, hence blue-enriched white light may function as a moderator. Further studies are needed, and the findings should be tentatively considered.Trial registration: ClinicalTrials.gov (ID: NCT03203538) Registered: 26/06/2017; https://clinicaltrials.gov/study/NCT03203538.


The quality of moral decision-making, seen as the activation of cognitive schemas depicting different levels of moral development, was reduced during simulated night work in warm white light, but not blue-enriched light, compared to daytime.The quality of moral decision-making sems to be reduced during simulated night work, compared to daytime.More studies assessing the impact of night work and light interventions on the quality of moral decision-making are needed to validate these tentative findings.


Assuntos
Ritmo Circadiano , Sono , Masculino , Humanos , Adulto Jovem , Adulto , Sono/fisiologia , Estudos Cross-Over , Ritmo Circadiano/fisiologia , Cognição , Princípios Morais , Tolerância ao Trabalho Programado/fisiologia
9.
Sleep Med ; 118: 1-8, 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38564888

RESUMO

The brain-derived neurotrophic factor (BDNF) mediates the plasticity associated with memory processing, and compensatorily increases after acute sleep deprivation (SD). However, whether the altered spontaneous brain activity mediates the association between BDNF and working memory in SD remains unknown. Here, we aimed to probe the mediating role of the spontaneous brain activity between plasma BDNF and WM function in SD. A total of 30 healthy subjects with regular sleep were enrolled in this study. Resting-sate functional magnetic resonance imaging (fMRI) scans and the peripheral blood were collected before and after 24 h SD. All participants also received n-back task assessing working memory (WM) performance. The amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) were calculated to reflect the intensity of regional spontaneous brain activity. Plasma BDNF was measured by sandwich ELISA. Our results revealed a significant decline in WM and increase in plasma BDNF level after SD, and negative association between the changed WM performance and plasma BDNF level. Specially, the ALFF of the left inferior parietal cortex and right inferior frontal cortex, and fALFF of the left anterior cingulate and medial prefrontal cortex and left posterior opercular cortex regulated the association between the BDNF and one-back reaction time respectively. Our results suggest that the association between BDNF and working memory may be mediated through regional spontaneous brain activity involving in the cerebral cortex, which may provide new sight into the interaction between neurotrophic factors and cognition, and potential targets for noninvasive brain stimulation on WM decline after acute SD.

10.
Mol Autism ; 15(1): 13, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570872

RESUMO

BACKGROUND: Sleep disturbances are a common comorbidity to most neurodevelopmental disorders and tend to worsen disease symptomatology. It is thus crucial to understand mechanisms underlying sleep disturbances to improve patients' quality of life. Neuroligin-2 (NLGN2) is a synaptic adhesion protein regulating GABAergic transmission. It has been linked to autism spectrum disorders and schizophrenia in humans, and deregulations of its expression were shown to cause epileptic-like hypersynchronized cerebral activity in rodents. Importantly, the absence of Nlgn2 (knockout: KO) was previously shown to alter sleep-wake duration and quality in mice, notably increasing slow-wave sleep (SWS) delta activity (1-4 Hz) and altering its 24-h dynamics. This type of brain oscillation is involved in memory consolidation, and is also a marker of homeostatic sleep pressure. Sleep deprivation (SD) is notably known to impair cognition and the physiological response to sleep loss involves GABAergic transmission. METHODS: Using electrocorticographic (ECoG) recordings, we here first aimed to verify how individual slow wave (SW; 0.5-4 Hz) density and properties (e.g., amplitude, slope, frequency) contribute to the higher SWS delta activity and altered 24-h dynamics observed in Nlgn2 KO mice. We further investigated the response of these animals to SD. Finally, we tested whether sleep loss affects the gene expression of Nlgn2 and related GABAergic transcripts in the cerebral cortex of wild-type mice using RNA sequencing. RESULTS: Our results show that Nlgn2 KO mice have both greater SW amplitude and density, and that SW density is the main property contributing to the altered 24-h dynamics. We also found the absence of Nlgn2 to accelerate paradoxical sleep recovery following SD, together with profound alterations in ECoG activity across vigilance states. Sleep loss, however, did not modify the 24-h distribution of the hypersynchronized ECoG events observed in these mice. Finally, RNA sequencing confirmed an overall decrease in cortical expression of Nlgn2 and related GABAergic transcripts following SD in wild-type mice. CONCLUSIONS: This work brings further insight into potential mechanisms of sleep duration and quality deregulation in neurodevelopmental disorders, notably involving NLGN2 and GABAergic neurotransmission.


Assuntos
Privação do Sono , Sono de Ondas Lentas , Animais , Humanos , Camundongos , Eletroencefalografia , 60519 , Qualidade de Vida , Sono/fisiologia , Privação do Sono/metabolismo
11.
Exp Brain Res ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563978

RESUMO

The Attentional Blink (AB) is a phenomenon that reflects difficulty in detecting or identifying the second of two successive targets (T1 and T2) that are presented in rapid succession, between 200-500ms apart. The AB involves indicators of attentional and temporal integration mechanisms related to the early stages of visual processing. The aim of this study was to identify the effects of 24-h of sleep deprivation (total sleep deprivation, TSD) on the attentional and temporal integration mechanisms of the AB. Twenty-two undergraduate students were recorded during five successive days, in these three conditions: baseline (two days), TSD (one day), and recovery (two days). Each day, at around 12:00 h, participants responded to a Rapid Serial Visual Presentation task (RSVP) that presented two targets separated by random intervals from 100 to 1000ms. The attentional mechanisms were assessed by the AB presence, the AB magnitude, and the AB interval, while the temporal integration mechanisms were evaluated by lag-1 sparing and order reversal responses. TSD negatively affected the attentional mechanisms, which is expressed by an overall reduction in performance, an extended AB interval, and a reduced AB magnitude. TSD also negatively affected the temporal integration mechanisms, manifested by an absence of lag-1 sparing and an increase in order reversals. These results suggest that people are still able to respond to two successive stimuli after 24 h without sleep. However, it becomes more difficult to respond to both stimuli because the attentional and temporal integration mechanisms of the AB are impaired.

12.
Exp Eye Res ; 243: 109907, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38649019

RESUMO

Sleep loss is common in modern society and is increasingly associated with eye diseases. However, the precise effects of sleep loss on retinal structure and function, particularly on the retinal circadian system, remain largely unexplored. This study investigates these effects using a chronic sleep deprivation (CSD) model in mice. Our investigation reveals that CSD significantly alters the retinal circadian transcriptome, leading to remarkable changes in the temporal patterns of enriched pathways. This perturbation extends to metabolic and immune-related transcriptomes, coupled with an accumulation of reactive oxygen species in the retina. Notably, CSD rhythmically affects the thickness of the ganglion cell complex, along with diurnal shifts in microglial migration and morphology within the retina. Most critically, we observe a marked decrease in both scotopic and photopic retinal function under CSD conditions. These findings underscore the broad impact of sleep deprivation on retinal health, highlighting its role in altering circadian gene expression, metabolism, immune response, and structural integrity. Our study provides new insights into the broader impact of sleep loss on retinal health.

13.
Mikrochim Acta ; 191(5): 265, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625451

RESUMO

Sleep deprivation (SD) is highly prevalent in the modern technological world. Emerging evidence shows that sleep deprivation is associated with oxidative stress. At the organelle level, the Golgi apparatus actively participates in the stress response. In this study, to determine whether SD and Golgi apparatus stress are correlated, we rationally designed and fabricated a novel Golgi apparatus-targeted ratiometric nanoprobe called Golgi dots for O2·- detection. This probe exhibits high sensitivity and selectivity in cells and brain slices of sleep-deprived mice. Golgi dots can be readily synthesized by coprecipitation of Golgi-F127, an amphiphilic polymer F127 modified with a Golgi apparatus targeting moiety, caffeic acid (CA), the responsive unit for O2·-, and red emissive carbon nanodots (CDs), which act as the reference signal. The fluorescence emission spectrum of the developed nanoprobe showed an intense peak at 674 nm, accompanied by a shoulder peak at 485 nm. As O2·- was gradually added, the fluorescence at 485 nm continuously increased; in contrast, the emission intensity at 674 nm assigned to the CDs remained constant, resulting in the ratiometric sensing of O2·-. The present ratiometric nanoprobe showed high selectivity for O2·- monitoring due to the specific recognition of O2·- by CA. Moreover, the Golgi dots exhibited good linearity with respect to the O2·- concentration within 5 to 40 µM, and the limit of detection (LOD) was ~ 0.13 µM. Additionally, the Golgi dots showed low cytotoxicity and an ability to target the Golgi apparatus. Inspired by these excellent properties, we then applied the Golgi dots to successfully monitor exogenous and endogenous O2·- levels within the Golgi apparatus. Importantly, with the help of Golgi dots, we determined that SD substantially elevated O2·- levels in the brain.


Assuntos
Encéfalo , Ácidos Cafeicos , Polietilenos , Polipropilenos , Privação do Sono , Animais , Camundongos , Complexo de Golgi , Suplementos Nutricionais
14.
Front Hum Neurosci ; 18: 1358551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628971

RESUMO

Objective, rapid evaluation of cognitive function is critical for identifying situational impairment due to sleep deprivation. The present study used brain vital sign monitoring to evaluate acute changes in cognitive function for healthy adults. Thirty (30) participants were scanned using portable electroencephalography before and after either a night of regular sleep or a night of total sleep deprivation. Brain vital signs were extracted from three established event-related potential components: (1) the N100 (Auditory sensation); (2) the P300 (Basic attention); and (3) the N400 (Cognitive processing) for all time points. As predicted, the P300 amplitude was significantly reduced in the sleep deprivation group. The findings indicate that it is possible to detect situational cognitive impairment due to sleep deprivation using objective, rapid brain vital sign monitoring.

15.
Nutrients ; 16(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38613079

RESUMO

Postpartum women experience unique barriers to maintaining healthy lifestyles after birth. Theory-based behaviour change techniques and intervention strategies can be integrated into postpartum lifestyle interventions to enable women to overcome barriers to change. This study aims to explore barriers and facilitators to engaging in healthy postpartum lifestyle behaviours and develop intervention strategies for integration in a postpartum lifestyle intervention using the Behaviour Change Wheel (BCW). Semi-structured interviews were conducted with women up to two years postpartum (n = 21). Interviews were thematically analysed, themes were mapped to the Capability, Opportunity, and Motivation Model of Behaviour Change and intervention strategies were developed using the BCW. Findings suggest that women face barriers and facilitators within capability (sleep deprivation, mental exhaustion, ability to plan), opportunity (support of friends, partners and extended families) and motivation (challenges with prioritising self, exercise to cope with stress). Intervention strategies included supporting behaviour regulation and sleep to enhance capability, engaging partners, strengthening peer support to create opportunities and highlighting the mental health benefits of healthy lifestyles to inspire motivation. Integrating targeted evidence-based behaviour change strategies into postpartum lifestyle interventions may support women in overcoming commonly reported barriers to a healthy lifestyle.


Assuntos
Estilo de Vida Saudável , Estilo de Vida , Feminino , Humanos , Motivação , Período Pós-Parto , Terapia Comportamental
16.
J Family Med Prim Care ; 13(2): 471-476, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38605800

RESUMO

Background: Intense marketing of fast-food items impacts the eating habits among children and adolescents. Various studies suggest that increased screen time leads to increased fast-food consumption and decreased sleep duration, both of which are linked to obesity in growing age. Objectives: To assess screen time and dietary habits among the study group and to estimate their effect on sleep deprivation and obesity. Methods: This cross-sectional study was conducted from January 2019 to December 2019 in three schools in Amritsar selected by lottery method of simple random sampling. Out of 4,226 students, 355 overweight and obese students were interviewed regarding their dietary habits. An informed written assent was taken from the mothers. The information was collected on a semi-structured, pre-designed questionnaire by interviewing the mothers of students between 6 and 11 years of age and the students of 12-16 years. Results: 94.4% of students preferred fast foods to regular meals and 58.3% were in the habit of skipping breakfast. 59.4% had a history of daily intake of fast foods while 76.1% had a habit of consuming fast foods while watching television. Only 31.7% had an adequate sleeping pattern of 9-11 hours and 79.7% of the students had a screen time of over 3 hours. Conclusions: More the screen time, the more the chances of missing meals. Being awake for a long odd time leads to increased consumption of foods/snacks furthermore. Regarding the harmful effects of fast foods, the source of information was from schools, but only 41.4% were aware about these effects.

17.
Biomed Pharmacother ; 174: 116547, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599059

RESUMO

Several studies have found that sleep deprivation (SD) can lead to neuronal ferroptosis and affect hippocampal function. However, there are currently no effective interventions. Vitamin B6 is a co-factor for key enzymes in the transsulfuration pathway which is critical for maintaining cell growth in the presence of cysteine deprivation. The results showed that SD inhibited cystine-glutamate antiporter light chain subunit xCT protein expression and caused cysteine deficiency, which reduced the synthesis of the glutathione (GSH) to trigger neuronal ferroptosis. Nissl staining further revealed significant neuronal loss and shrinkage in the CA1 and CA3 regions of the hippocampus in SD mice. Typical ferroptotic indicators characterized by lipid peroxidation and iron accumulation were showed in the hippocampus after sleep deprivation. As expected, vitamin B6 could alleviate hippocampal ferroptosis by upregulating the expression of cystathionine beta-synthase (CBS) in the transsulfuration pathway, thereby replenishing the intracellular deficient GSH and restoring the expression of GPX4. Similar anti-ferroptotic effects of vitamin B6 were demonstrated in HT-22 cells treated with ferroptosis activator erastin. Furthermore, vitamin B6 had no inhibitory effect on erastin-induced ferroptosis in CBS-knockout HT22 cells. Our findings suggested chronic sleep deprivation caused hippocampal ferroptosis by disrupting the cyst(e)ine/GSH/GPX4 axis. Vitamin B6 alleviated sleep deprivation-induced ferroptosis by enhancing CBS expression in the transsulfuration pathway.

18.
Brain Res ; 1834: 148915, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582414

RESUMO

Bestrophin-1 and anoctamin-1 are members of the calcium-activated chloride channels (CaCCs) family and are involved in inflammatory and neuropathic pain. However, their role in pain hypersensitivity induced by REM sleep deprivation (REMSD) has not been studied. This study aimed to determine if anoctamin-1 and bestrophin-1 are involved in the pain hypersensitivity induced by REMSD. We used the multiple-platform method to induce REMSD. REM sleep deprivation for 48 h induced tactile allodynia and a transient increase in corticosterone concentration at the beginning of the protocol (12 h) in female and male rats. REMSD enhanced c-Fos and α2δ-1 protein expression but did not change activating transcription factor 3 (ATF3) and KCC2 expression in dorsal root ganglia and dorsal spinal cord. Intrathecal injection of CaCCinh-A01, a non-selective bestrophin-1 blocker, and T16Ainh-A01, a specific anoctamin-1 blocker, reverted REMSD-induced tactile allodynia. However, T16Ainh-A01 had a higher antiallodynic effect in male than female rats. In addition, REMSD increased bestrophin-1 protein expression in DRG but not in DSC in male and female rats. In marked contrast, REMSD decreased anoctamin-1 protein expression in DSC but not in DRG, only in female rats. Bestrophin-1 and anoctamin-1 promote pain and maintain tactile allodynia induced by REM sleep deprivation in both male and female rats, but their expression patterns differ between the sexes.

19.
Ergonomics ; : 1-11, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587121

RESUMO

This trial presents a laboratory model investigating the effect of quick returns (QRs, <11 h time off between shifts) on sleep and pre-sleep arousal. Using a crossover design, 63 participants worked a simulated QR condition (8 h time off between consecutive evening- and day shifts) and a day-day (DD) condition (16 h time off between consecutive day shifts). Participants slept at home and sleep was measured using a sleep diary and sleep radar. Compared to the DD condition, the QR condition reduced subjective and objective total sleep time by approximately one hour (both p < .001), reduced time in light- (p < .001), deep- (p = .004), rapid eye movement (REM, p < .001), percentage of REM sleep (p = .023), and subjective sleep quality (p < .001). Remaining sleep parameters and subjective pre-sleep arousal showed no differences between conditions. Results corroborate previous field studies, validating the QR model and indicating causal effects of short rest between shifts on common sleep parameters and sleep architecture.


This trial proposes a laboratory model to investigate the consequences of quick returns (QRs, <11h time off between shifts) on subjective/objective sleep and pre-sleep arousal. QRs reduced total sleep time, light-, deep-, REM sleep, whereas pre-sleep arousal was unaffected. Results emphasise the importance of ensuring sufficient rest time between shifts.Abbreviation: QR: Quick return; DD: Day-day; NREM: Non-rapid eye movement; REM: Rapid eye movement; PSG: Polysomnography; TIB: Time in bed; SOL: Sleep onset latency; WASO: Wake after sleep onset; TST: Total sleep time; EMA: Early morning awakening; PSAS: Pre-Sleep Arousal Scale; MEQ: Morning-Evening Questionnaire; LMM: Linear mixed model; EMM: Estimated marginal mean; SD: Standard deviation; SE: Standard error; d: Cohens' d; h: hours; m: minutes.

20.
Healthcare (Basel) ; 12(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38610197

RESUMO

Adolescents often experience insufficient sleep and have unhealthy sleep habits. Our aim was to investigate the sleep patterns of secondary education students in Heraklion, Crete, Greece and their association with school performance and health habits. We conducted a community-based cross-sectional study with 831 students aged 13-19 years who completed an online self-reported questionnaire related to sleep and health habits. The data are mostly numerical or categorical, and an analysis was performed using t-tests, chi-square tests and multiple logistic regression. During weekdays, the students slept for an average of 7 ± 1.1 h, which is significantly lower than the 7.8 ± 1.5 h average on weekends (p < 0.001). Nearly 79% reported difficulty waking up and having insufficient sleep time, while 73.8% felt sleepy at school at least once a week. Having sufficient sleep time ≥ 8 h) was positively correlated with better academic performance (OR: 1.48, CI: 1.06-2.07, p = 0.022) and frequent physical exercise (never/rarely: 13.5%, sometimes: 21.2%, often: 65.3%; p = 0.002). Conversely, there was a negative correlation between adequate sleep and both smoking (OR: 0.29, CI: 0.13-0.63) and alcohol consumption (OR: 0.51, CI: 0.36-0.71, p = 0.001). In conclusion, this study shows that students in Heraklion, Crete frequently experience sleep deprivation, which is associated with compromised academic performance, reduced physical activity and an increased likelihood of engaging in unhealthy behaviors like smoking and alcohol consumption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...